细胞内功能区隔与蛋白质分选

  定义:结构、功能和发生上相关的内膜形成的细胞结构称为细胞内膜系统,如核被膜、内质网、高尔基体等。

  从个体发生来看新细胞的内膜系统来源于原有内膜系统的,具有核外遗传(epigenetic)的特性。

  ①信号序列(signal sequence):存在于蛋白质一级结构上的线个氨基酸残基,有些在完成蛋白质的定向转移后被信号肽酶(signal peptidase)切除;通常信号序列对所引导的蛋白质没有性要求,每一种信号序列决定特殊的蛋白质转运方向。

  ②信号斑(signal patch):存在于完成折叠的蛋白质中,构成信号斑的信号序列之间可以不相邻,折叠在一起构成蛋白质分选的信号。

  2、跨膜运输(transmembrane transport):蛋白质通过跨膜通道进入目的地。如细胞质中合成的蛋白质通过线粒体上的转位因子(translocator)进入线、膜泡运输(vesicular transport):被运输的物质在内质网或高尔基体中加工成衣被小泡,选择性地运输到靶细胞器。

  细胞内膜系统之间的物质传递常常通过膜泡运输方式进行。各类运输泡之所能够被准确地运到靶细胞器,主要取决于膜的表面识别特征。

  大多数运输小泡是在膜的特定区域以出芽的方式产生的。其表面具有一个状的由蛋白质构成的衣被(coat)。这种衣被在运输小泡与靶细胞器的膜融合之前解体。

  相关运输途径:质膜→内体,高尔基体→内体,高尔基体→溶酶体、植物液泡。

  结构:由3个重链和3个轻链组成,形成一个具有3个曲臂的形状。许多笼形蛋白的曲臂部分交织在一起,形成具有5边形网孔的。

  衔接蛋白(adaptin):介于笼形蛋白与配体受体复合物之间,起连接作用。目前至少发现4种,分别结合不同类型的受体,形成不同性质的转运小泡。

  当笼形蛋白衣被小泡形成时,可溶性蛋白dynamin聚集成一圈围绕在芽的颈部,将小泡柄部的膜尽可能地拉近(小于1.5nm),从而导致膜融合,掐断(pinch off)衣被小泡。

  功能: 负责回收、转运内质网逃逸蛋白( escapedproteins)返回内质网,由7种蛋白组成。

  大多数跨膜蛋白是直接结合在COP II衣被上,少数跨膜蛋白和多数可溶性蛋白通过受体与COP II衣被结合。

  分选信号位于跨膜蛋白胞质面的结构域,形式多样,有些包含双酸性基序[DE]X[DE] ,如Asp-X-Glu序列。

  激活的SAR 1出一条脂肪酸的尾巴,插入内质网膜,促进衣被蛋白的核化和组装,形成运输小泡。

  活化的SAR1还可以激活磷脂酶D(phospholipase D),将一些磷脂水解,使形成衣被的蛋白牢固地结合在膜上。

  动物细胞中已发现20多种SNAREs,位于运输小泡上的叫作v-SNAREs,位于靶膜上的叫作t-SNAREs。

  v-和t-SNAREs都具有一个螺旋结构域,能相互缠绕形成跨SNAREs复合体(trans-SNAREs complexes),将运输小泡的膜与靶膜拉在一起,实现运输小泡性停泊和融合。

  破伤风毒素和肉毒素等细菌分泌的神经性毒素实际上是一类特殊的蛋白酶,能够选择性地降解SNAREs,从而阻断神经传导。

  NSF催化SNAREs的分离,它能利用ATP作为能量通过插入几个适配蛋白(adaptor protein)将SNAREs复合体的螺旋缠绕分开,以便开始下一轮的转运。

  Rabs与衣被召集GTP酶相似,起开关作用,结合P失活,位于细胞质中,结合GTP激活,位于细胞膜、内膜和运输小泡膜上,调节SNAREs复合体的形成。Rabs还有许多效应因子(effector)。

  受体介导的内吞作用是一种选择浓缩机制。低密脂蛋白、运铁蛋白、生长因子、胰岛素等蛋白类激素、糖蛋白等,都是通过受体介导的内吞作用进行的。

  衣被小窝(coated pits)是质膜向内凹陷的部位,相当一个过滤器(molecular filter)。约占肝细胞表面积的2%。受体、笼形蛋白和衔接蛋白大量集中于此处。

  受体胞质端有一个由4个氨基酸残基组成的序列(Tyr-X-X-Φ),X为任何一种氨基酸,Φ为较大的疏水氨基酸,如Phe、Leu、Met等,衔接蛋白对此序列有识别能力。

  受体同配体结合后启动内化作用,笼形蛋白开始组装。在dynamin的作用下掐断后形成衣被小泡。

  胆固醇主要在肝细胞中合成,随后与磷脂和蛋白质形成低密脂蛋白(low-density lipoproteins,LDL),到血液中。

  LDL颗粒的质量为3X106Da,芯部含有被长链脂肪酸酯化胆固醇。周围由磷脂和胆固醇构成的脂单层包围,并且还有一个较大的Apo-B蛋白(配体)。

  进入细胞质的衣被小泡随即脱掉成笼蛋白衣被,成为平滑小泡,同早期内体融合,内体中PH值低,使受体与LDL颗粒分离;再经晚期内体将LDL送人溶酶体。

  ③ 有些被运至质膜不同的结构域, 形成穿胞运输(transcytosis)。如母鼠的抗体从血液通过上皮细胞进入母乳中,乳鼠肠上皮细胞将抗体摄人体内,都是通过穿胞运输完成的。

  组成型的外排途径(constitutive exocytosis pathway):由高尔基体TGN区分泌囊泡向质膜运输的过程,其作用在于更新膜蛋白和膜脂、形成细胞外基质、或作为营养成分和信号。通过default pathway完成蛋白质转运过程。

  调节型外排途径(regulated exocytosis pathway):分泌物(如激素、或酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物出去。

  K、R、Porter等于1945年发现于培养的小鼠成纤维细胞,因最初看到的是位于细胞质内部的网状结构,故名内质网(endoplasmic reticulum,ER)。

  ER膜中含大约60%的蛋白和40%的脂类,脂类主要成分为磷脂,磷脂酰胆碱含量较高,鞘磷脂含量较少,没有或很少含胆固醇。

  ER约有30多种膜结合蛋白,另有30多种位于内质网腔,这些蛋白的分布具有异质性,如:葡糖-6-磷酸酶,普遍存在于内质网,被认为是标志酶,核糖体结合糖蛋白(ribophorin)只分布在RER,P450酶系只分布在SER。

  蛋白质都是在核糖体上合成的,并且起始于细胞质基质,但是有些蛋白质在合成开始不久后便转在内质网上合成,这些蛋白主要有:

  G、Blobel 等1975 年提出了信号(Signalhypothesis),认为蛋白质N端的信号肽,指导蛋白质转至内质网上合成,因此获1999年诺贝尔生理医学。

  1、信号肽(signal peptide),位于新合成肽链的N端,一般16~30个氨基酸残基,含有6-15个连续排列的带正电荷的非极性氨基酸,由于信号肽又是引导肽链进入内质网腔的一段序列,又称开始转移序列(start transfer sequence);

  3、SRP受体(SPR receptor),内质网膜的整合蛋白,异二聚体,可与SRP结合。

  4、停止转移序列(stop transfer sequence),与内质网膜的亲合力很高,肽链继续进入网腔,成为跨膜Pr。

  信号肽与SRP结合→肽链延伸终止→SRP与受体结合→SRP脱离信号肽→肽链在内质网上继续合成,同时信号肽引导新生肽链进入内质网腔→信号肽切除→肽链延伸至终止。

  包括糖基化、羟基化、酰基化、二硫键形成等,其中最主要的是糖基化,几乎所有内质网上合成的蛋白质最终被糖基化。

  内质网上进行N-连接的糖基化。糖的供体为核苷糖,如CMP-唾液酸、P-甘露糖、UDP-N-乙酰葡糖胺。

  糖首先被糖基转移酶转移到膜上的磷酸长醇(dolichol phosphate)上,装配成寡糖链。

  再被寡糖转移酶转到新合成肽链特定序列(Asn-X-Ser或Asn-X-Thr)的天冬酰胺残基上。

  COP II介导由内质网输出的膜泡运输,这种膜泡由内质网的排出位点(exit sites)以出芽的方式排出。

  不同的蛋白质在内质网腔中停留的时间不同,这主要取决于蛋白质完成正确折叠和组装的时间,这一过程是在属于hsp70家族的ATP酶的作用下完成的,需要消耗能量。

  有些无法完成正确折叠的蛋白质被输出内质网,转入溶酶体中降解掉,大约90%的新合成的T细胞受体亚单位和乙酰胆碱受体都被降解掉,而从未到达靶细胞膜。

  1、合成磷脂、胆固醇等膜脂,合成后以出芽的方式转运至高尔基体,溶酶体和质膜上,或借磷脂转移蛋白(PTP)形成水溶性复合物,转至其他膜上。

  最早发现于1855年,1889年,Golgi用银染法,在猫头鹰的神经细胞内观察到了清晰的结构,因此定名为高尔基体。20世纪50年代以后才正确认识它的存在和结构。

  凸出的一面对着内质网称为形成面或顺面(cis face)。凹进的一面对着质膜称为成熟面或(trans face)。顺面和都有一些或大或小的运输小泡。

  扁平囊直径约1um,单层膜构成,中间为囊腔,周缘多呈泡状,4~8个扁平囊在一起(某些藻类可达一二十个),构成高尔基体的主体(Golgi stack)。

  高尔基体膜含有大约60%的蛋白和40%的脂类,具有一些和ER共同的蛋白成分。膜脂中磷脂酰胆碱的含量介于ER和质膜之间,中性脂类主要包括胆固醇,胆固醇酯和甘油三酯。

  高尔基体中的酶主要有糖基转移酶、磺基-糖基转移酶、氧化还原酶、磷酸酶、蛋白激酶、甘露糖苷酶、转移酶和磷脂酶等不同的类型。

  2、高尔基体中间膜囊(medial Golgi),多数糖基修饰,糖脂的形成以及与高尔基体有关的糖合成均发生此处。

  3、高尔基体的网络结构( trans Golgi network ,TGN), 是高尔基体的出口区域,功能是参与蛋白质的分类与包装,最后输出。

  ④胞嘧啶单核苷酸酶(CMP酶):可显示靠近trans面上的一些膜囊状和管状结构,CMP酶也是溶酶体的标志酶。

  如将蛋白质N端或C端切除,成为有活性的物质,如胰岛素(C端);或将含有多个相同氨基序列的前体水解为有活性的多肽,如神经肽。

  1、初级溶酶体(primary lysosome)直径约0.2~0.5um,有多种酸性水解酶,但没有活性,包括蛋白酶,核酸酶、脂酶、磷酶酶等60余种,反应的最适PH值为5左右。

  是正在进行或完成消化作用的溶酶体,内含水解酶和相应的底物,可分为自噬溶酶体(autophagolysosome)和异噬溶酶体(phagolysosome) 。

  又称后溶酶体(post-lysosome)已失去酶活性,仅留未消化的残渣,故名。残体可通过外排作用排出细胞,也可能留在细胞内逐年增多,如表皮细胞的老年斑,肝细胞的脂褐质。

  2、自体:清除无用的生物大,衰老细胞、细胞器、个体发育中多余的细胞。许多生物大的半衰期只有几小时至几天,肝细胞中线、防御作用:如巨噬细胞病原体。

  内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰→进入高尔基体cis面膜囊→磷酸转移酶识别溶酶体水解酶的信号斑→将乙酰葡糖胺磷酸转移在1~2个甘露糖残基上→在中间膜囊切去N-乙酰葡糖胺形成M6P配体→与trans膜囊上的受体结合→通过clathrin衣被包装成初级溶酶体。

  1、矽肺:二氧化硅尘粒(矽尘)吸入肺泡后被巨噬细内,导致细胞溶酶体破裂,水解酶,细胞崩解,矽尘释出,后又被其他巨噬细内,如此反复进行。激活成纤维细胞,导致胶原纤维沉积,肺组织纤维化。

  2、肺结核:结核杆菌不产生内、外毒素, 也无荚膜和性酶。但是菌体成分硫酸脑苷脂能抵抗溶酶体的杀伤作用,使结核杆菌在肺泡内大量生长繁殖, 导致巨噬细胞裂解,出的结核杆菌再被而重复上述过程,引起肺组织钙化和纤维化。

  台-萨氏综合征(Tay-Sachs diesease):溶酶体缺少氨基已糖酯酶A,导致神经节甘脂GM2积累。

  II型糖原累积病(Pompe病):缺乏α-1,4-葡萄糖苷酶,糖原在溶酶体中积累。

  细胞内含物病(inclusion-cell disease):N-乙酰葡糖胺磷酸转移酶单基因突变。高尔基体中加工的溶酶体前酶上不能形成M6P分选信号,病人成纤维细胞的溶酶体中没有水解酶,底物在溶酶体中贮积,形成“包涵体”。

  是一种具有异质性的细胞器。直径通常0.5um,呈圆形,椭圆形或哑呤形不等,由单层膜围绕而成。

  特点:含过氧化氢酶(标志酶)和一至多种依赖黄素(flavin)的氧化酶,已发现40多种氧化酶,各类氧化酶的共性是将底物氧化后生成过氧化氢。而过氧化氢酶又利用H2O2去氧化其它底物。

  1、在动物中: ①参与脂肪酸的β-氧化; ②具有解毒作用,过氧化氢酶利用H2O2将酚、甲醛、甲酸和醇等有害物质氧化,饮入的酒精1/4是在微体中氧化为乙醛。

  2、在植物中:①参与光呼吸,将光合作用的副产物乙醇酸氧化为乙醛酸和过氧化氢,②在萌发的种子中,进行脂肪的β-氧化,产生乙酰辅酶A,经乙醛酸循环,由异柠檬酸裂解为乙醛酸和琥珀酸,加入三羧酸循环,因涉及乙醛酸循环,又称乙醛酸循环体。

  引导蛋白质进入微体的信号序列是-Ser-Lys-Leu-COO-。膜脂在内质网上合成后,通过磷脂转移蛋白PTP转移而来。

手机正文底部

您可以还会对下面的文章感兴趣:

  • 生物技术干细胞工程
  • G418筛选稳定表达细胞系
  • Oncotarget:中性粒细胞与淋巴细胞比值预测神经胶质瘤患者情况!
  • 甲醇酵母表达的试验步骤
  • 为什么大多数细胞培养需要用二氧化碳培养箱
  • 最新评论