PCR技术:PCR技术应用进展

  PCR技术自1985年建立以来,发展之迅速、应用之广泛,表明其具有强大的生命力.近些年来,基于PCR的基本原理,许多学者充分发挥创造性思维,对PCR技术进行研究和改进,使PCR技术得到了进上步地完善,并在此基础上派生出了许多新的用途.

  原位PCR就是在组织细胞里进行PCR反应,它结合了具有细胞定位能力的原位杂交和高度的PCR技术的优点,是细胞学科研与临床诊断领域里的一项有较大潜力的新技术.

  原位PCR是Hasse等于1990年建立的,实验用的标本是新鲜组织、石蜡包埋组织、脱落细胞、血细胞等.其基本方法为①固定组织或细胞:将组织细胞固定于预先用四氟乙烯包被的玻片上,并用多聚甲醛处理,再灭活除去细胞内源性过氧化物酶.②蛋白酶K消化处理:用60ug/ml的蛋白酶K将固定好的组织细胞片55℃消化处理2h后,96℃2min以灭活蛋白酶K.③PCR扩增:在组织细胞片上,加PCR反应液,覆盖并加液体石蜡后,直接放在扩增仪的金属板上,进行PCR循环扩增.有的基因扩增仪带有专门用于原位PCR的装置.④杂交

  原位PCR既能分辩鉴定带有靶序列的细胞,又能标出靶序列在细胞内的,于和细胞水平上研究疾病的发病机理和临床过程及病理的转归有重大的实用价值.其性和性高于一般的PCR.

  连接酶链反应(Ligase chain reaction,LCR),是一种新的DNA体外扩增和检测技术,主要用于点突变的研究及靶基因的扩增.

  连接酶链反应是Backman1997年为检出靶基因序列中的点突变而设计发明,并申报了专利.1988年Landegren也进行了该项研究.1988年Backman等又因分离热稳定的连接酶,而申报专利,1991年Backman和Barany分别用耐热DNA连接酶进行了LCR试验.耐热DNA连接酶可以在热循环中保持活性,提高连接反应的性,排除了背景扩增和免除了不断补充酶的繁琐程序.

  LCR的基本原理为利用DNA连接酶.地将双链DNA片段连接,经变性-退火-连接三步骤反复循环,从而使靶基因序列大量扩增.其程序为:在模DNA、DNA连接酶、寡核苷酸引物以及相应的反应条件下,首先加热至一定温度下(94~95℃)使DNA变性,双链打开,然后降温退火(65℃),引物与之互补的模板DNA结合并留下一缺口,如果与靶序列杂交的相邻的寡核苷酸引物与靶序列完全互补,DNA连接酶即可连接封闭这一缺口,则LCR反应的三步骤(变性-退火-连接)就能反复进行,每次连接反应的产物又可在下一轮反应中作模板,使更多的寡核苷酸被连接与扩增.若连接处的靶序列有点突变,引物不能与靶序列精确结合,缺口附近核苷酸的空间结构发生变化,连接反应不能进行,也就不能形成连接产物.

  LCR的引物是两对分别互补的引物,引物长度为20~26个,以引物与靶序列的性结合,LCR识别点突变的性高于PCR,其性首先取决于引物与模板的性结合,其次是耐热连接酶的性.LCR连接反应温度接近寡苷酸的解链温度(Tm),因而识别单核苷酸错配的性极高.

  LCR的扩增效率与PCR相当,用耐热连接酶做LCR只用两个温度循环,94℃min变性和65℃复性并连接,循环30次左右.其产物的检测也较方便灵敏.目前该方法主要用点突变的研究与检测、微生物病原体的检测及定向诱变等,还可用于单碱基遗传病多态性及单碱基遗传病的产物诊断,微生物的种型鉴定,癌基因的点突变研究等.

  两种特殊的引物和缓冲液.引物I3"末端与靶序列互补,5"端含T7RNA多聚酶的启动子,这一引物是用于合成cDNA的.引物Ⅱ的碱基序列与cDNA的5"未端互补.

  在NASBA反应时,首先引物Ⅰ与RNA模板复性(结合),AMV逆酶催化合成cDNA,RNaseH水解cDNA上的RNA,形成一条单链的DNA;引物Ⅱ随即与此cDNA的5"未端结合,逆酶在此DNA模板的指导下合成第二条DNA链.这样形成的DNA双链含有T7RNA多聚酶的启动子.该酶即以此DNA为模板,出与样品RNA序列相同的RNA链,而且每条DNA模板在该酶的作用下可合成约100个拷贝的RNA.每条新的RNA又可作为逆录酶的模板合成cDNA.如此反复进行,将获得更多的RNA和cDNA.

  其基本方法为:将引物,标本加入扩增反应液,65℃1min使RNA二级结构打开,降温至37℃加入逆酶,T7RNA聚合酶和RNaseH,并在37℃反应1~1.5小时,其产物经琼脂糖电泳,溴乙锭染色即可在紫外仪下看到条带.NASBA的特点为操作简便,不需特殊仪器,不需温度循环.整个反应过程由三种酶控制,循环次数少,性高,其扩增效率高于PCR,性好.

  合成A、B引物,引物A的3"末端与待扩增RNA互补,其5"端有T7RNA多聚酶的启动子信息.逆酶以A引物为起点合成cDNA;引物B与此cDNA3"端互补合成cDNA第二链.逆酶除具有逆活性外,还有DNA多聚酶的活性及RNaseH的活性.T7RNA多聚酶又以此双链DNA为模板.出与待扩增RNA一样的RNA,这些RNA又可作为下轮反应的模板.T7RNA多聚酶的催化效率很高,一个模板可10~103个RNA拷贝,因而反应液中待检RNA的数量以10的指数方式扩增.

  TAS的主要特点是扩增效率高,因为其RNA拷贝数呈10的指数方式增加,只需6个循环靶序列的拷贝数就能达到2×106.它的另一个特点是性高,由于TAS只能进行6次温度循环,错掺率低,加之用葡聚糖珠夹心杂交,因而性也高.虽然本法有较高的性和性,但其循环过程复杂,需重复加入逆酶和T7RNA多聚酶,有待进一步研究.

  Kacian等于1972年首次报报Qβ复制酶(Q-beta replicase)催化RNA模板的复制功能,它能在常温30min,将其天然模模MDV-1RNA扩增至109.1986年Chu等报道用生物标记的靶序列性探针,可与亲和素联接的MDV-1RNA杂交,经洗脱未被结合的MDV-1后,再加入Qβ复制酶,扩增复制MDV-1拷贝,然后用溴乙锭染色检测或用同源性的第二探针杂交.

  Qβ复制酶是一种RNA指导的RNA聚合酶,它有3个特点:①不需寡核苷酸引物的引导就可启动RNA的合成.②能地识别RNA基因中由于内碱基配对而形成的特有的RNA折叠结构.③在Qβ复制酶的天然模板MDV-1RNA的非折叠结构区插入一短的核酸序列不影响该酶的复制.因而,如在此区插入核酸探针,则其序列照样可能被Qβ复制酶扩增.

  1988年Lizardi等,将靶基因序列插进MDV-1质粒里,用T7RNA聚合酶催化出MDV-1RNA探针,这种RNA探针可与靶序列杂交,然后洗去非杂交的探针,加入Qβ复制酶来扩增探针,被扩增的探针又可作为模板进行扩增,并呈指数递增.其产物按上述两种方法进行检测.现在该技术又发展了夹心杂交法,开关和靶依赖的复制等技术.

手机正文底部

您可以还会对下面的文章感兴趣:

  • 增加PCR性:引物设计、退火温度、递减PCR、引物浓度等
  • PCR技术:PCR常见问题分析与对策
  • PCR技术:Taq DNA聚合酶
  • 增加PCR的性:primers design 、stability of primers 、tmpature
  • PCR技术:反向PCR技术
  • 最新评论